Highly efficient Mn-doped CsPb(Cl/Br)3 quantum dots for white light-emitting diodes

Nanotechnology. 2020 Jan 31;31(6):065603. doi: 10.1088/1361-6528/ab5074. Epub 2019 Oct 23.

Abstract

White light-emitting diodes (WLEDs) based on all-inorganic perovskite CsPbX3 (X = Cl, Br, I) quantum dots (QDs) have attracted much attention and rely on mixing several colors of perovskites. However, this inevitably leads to a non-uniform light distribution and serious light loss. Here, a novel strategy was demonstrated to obtain white emission by combining the orange and blue emission from CsPb/Mn(Cl/Br)3 QDs. Notably, highly efficient white emission with a photoluminescence quantum yield of 94% was achieved by an anion exchange surface engineering (AESE) strategy. After AESE treatment the surface traps can be eliminated, resulting in improved exciton and Mn2+ emission. A prototype WLED device was fabricated and exhibited excellent optical stability, demonstrating great potential for perovskite QDs in the field of optoelectronics.