Remote Ligand Modifications Tune Electronic Distribution and Reactivity in Site-Differentiated, High-Spin Iron Clusters: Flipping Scaling Relationships

Inorg Chem. 2019 Dec 2;58(23):15971-15982. doi: 10.1021/acs.inorgchem.9b02470. Epub 2019 Nov 18.

Abstract

We report the synthesis, characterization, and reactivity of [LFe3O(RArIm)3Fe][OTf]2, the first Hammett series of a site-differentiated cluster. The cluster reduction potentials and CO stretching frequencies shift as expected on the basis of the electronic properties of the ligand: electron-donating substituents result in more reducing clusters and weaker C-O bonds. However, unusual trends in the energetics of their two sequential CO binding events with the substituent σp parameters are observed. Specifically, introduction of electron-donating substituents suppresses the first CO binding event (ΔΔH by as much as 7.9 kcal mol-1) but enhances the second (ΔΔH by as much as 1.9 kcal mol-1). X-ray crystallography, including multiple-wavelength anomalous diffraction, Mössbauer spectroscopy, and SQUID magnetometry, reveal that these substituent effects result from changes in the energetic penalty associated with electronic redistribution within the cluster, which occurs during the CO binding event.