Synthesis and Biological Evaluation of Genistein-IR783 Conjugate: Cancer Cell Targeted Delivery in MCF-7 for Superior Anti-Cancer Therapy

Molecules. 2019 Nov 14;24(22):4120. doi: 10.3390/molecules24224120.

Abstract

The flavonoid-based natural product genistein is a biologically active compound possessing promising anti-oxidant and anti-cancer properties. Poor pharmacokinetics along with low potency limit however the therapeutic application of genistein in cancer therapy. In order to overcome those limitations and to expand its therapeutic window of efficacy, we sought to covalently attach genistein with a heptamethine cyanine dye-IR 783-for cancer cell targeting and enhanced delivery to tumors. Herein we report the synthesis, a selective detailed characterization and preliminary in vitro/in vivo biological evaluation of genistein-IR 783 conjugate 4. The conjugate 4 displayed improved potency against human breast cancer MCF-7 cells (10.4 ± 1.0 μM) as compared with the parent genistein (24.8 ± 0.5 μM) or IR 783 (25.7 ± 0.7 μM) and exhibited selective high uptake in MCF-7 as against the normal mammary gland MCF-10A cells in various assays. In the cell viability assay, conjugate 4 exhibited over threefold lower potency against MCF-10A cells (32.1 ± 1.1 μM) suggesting that the anti-cancer profile of parent genistein is significantly improved upon conjugation with the dye IR783. Furthermore, the genistein-IR783 conjugate 4 was shown to be especially accumulated in MCF-7 cancer cells by fluorescent intensity measurements and inverted fluorescence microscopy in fixed cells as well as in live cells with time via live cell confocal fluorescence imaging. The mechanism-based uptake inhibition of conjugate 4 was observed with OATPs inhibitor BSP and in part with amiloride, as a macropinocytosis inhibitor. For the first time we have shown amiloride inhibited uptake of cyanine dye by about ~40%. Finally, genistein-IR 783 conjugate 4 was shown to be localized in MCF-7 tumor xenografts of mice breast cancer model via in vivo near infrared fluorescence (NIRF) imaging. In conclusion, conjugation of genistein with cyanine dye IR783 indeed improved its pharmacological profile by cancer cell selective uptake and targeting and therefore warrants further investigations as a new anti-cancer therapeutics derived from natural product genistein.

Keywords: breast cancer; genistein; near infrared; targeted drug delivery; tumor targeting.

MeSH terms

  • Animals
  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology
  • Breast Neoplasms / drug therapy
  • Cell Line, Tumor
  • Cell Survival / drug effects
  • Female
  • Genistein / chemical synthesis*
  • Genistein / chemistry
  • Genistein / pharmacology
  • Humans
  • MCF-7 Cells
  • Mice

Substances

  • Antineoplastic Agents
  • Genistein