Mechanical Properties of Nano SiO2 and Carbon Fiber Reinforced Concrete after Exposure to High Temperatures

Materials (Basel). 2019 Nov 17;12(22):3773. doi: 10.3390/ma12223773.

Abstract

This study presents the key mechanical and residual properties after high-temperature of different Nano SiO2 carbon fiber-reinforced concrete (NSCFRC) mixtures. A total of seven NSCFRC mixtures incorporating 0%-0.35% of carbon fiber by volume of concrete and 0%-2% Nano SiO2 by weight of the binder were studied. The key mechanical properties such as compressive strength, tensile strength, and flexural strength of NSCFRC with 0.25% carbon fiber and 1% NS were 6.8%, 20.3%, and 11.7% higher than PC (0% CFs, 0% NS), respectively. Scanning Electron Microscopy (SEM) shows that Nano SiO2 reduced the internal porosity and increased the compactness of the concrete matrix. Furthermore, the experimental result demonstrates that NSCFRC can improve the mechanical properties of concrete after high-temperature and equations were obtained to describe the evolution of residual properties at elevated temperatures. Results suggested that the effect of carbon fibers on the residual properties of concrete after high-temperature is less than steel fiber and polypropylene fiber. It was also indicated that adding appropriate Nano SiO2 to concrete is an effective means to improve the residual performance after high-temperature.

Keywords: NSCFRC; high temperatures; mechanical properties; microstructure; residual properties.