Proposing feature engineering method based on deep learning and K-NNs for ECG beat classification and arrhythmia detection

Australas Phys Eng Sci Med. 2019 Nov 26. doi: 10.1007/s13246-019-00814-w. Online ahead of print.

Abstract

Arrhythmia is slow, fast or irregular heartbeat. Manual ECG assessment and disease classification is an error-prone task because of vast differences in ECG morphology and difficulty in accurate identifying ECG components. Moreover, proposing a computer-aided diagnosis system for heartbeat classification can be useful when access to medical care centers is difficult or impossible. Therefore, the main aim of this study is classifying ECG beats for arrhythmia detection (four beat classes are considered). Previous studies have proposed different methods based on traditional machine learning and/or deep learning. In this paper, a novel feature engineering method is proposed based on deep learning and K-NNs. The features extracted by our proposed method are classified with different classifiers such as decision trees, SVMs with different kernels and random forests. Our proposed method has reasonably good performance for beat classification and achieves the average Accuracy of 99.77%, AUC of 99.99%, Precision of 99.75% and Recall of 99.30% using fivefold Cross Validation strategy. The main advantage of the proposed method is its low computational time compared to training deep learning models from scratch and its high accuracy compared to the traditional machine learning models. The strength and suitability of the proposed method for feature extraction is shown by the high balance between sensitivity and specificity.

Keywords: Arrhythmia detection; Deep learning; ECG beat classification; Feature engineering.