From nanoparticles to on-chip 3D nanothermite: electrospray deposition of reactive Al/CuO@NC onto semiconductor bridge and its application for rapid ignition

Nanotechnology. 2020 May 8;31(19):195712. doi: 10.1088/1361-6528/ab6fd8. Epub 2020 Jan 24.

Abstract

Nanothermites composed of nano-fuels and oxidants are attractive energetic materials, which have potential applications in microscale energy-demanding systems. Herein, nano-Al/CuO with nitrocellulose (NC) binder have been bottom-up assembled on semiconductor bridge (SCB) chip by electrospray, from nanoparticles to three-dimensional (3D) deposited structure. The morphological and compositional characterization confirms the constituents in Al/CuO@NC are homogeneously mixed at nano scale and the 3D structure at micro scale is tunable. The as-deposited Al/CuO@NC exhibits excellent energy output and superior chemical reactivity. Specifically, the heat release of Al/CuO@NC (1179.5 J g-1) is higher than that of random mixed Al/CuO (730.9 J g-1). Benefiting from outstanding exothermic properties, the material integrated with SCB initiator chip (Al/CuO@NC-SCB) for potential ignition application was investigated. The Al/CuO@NC-SCB micro energetic initiator can be functioned rapidly (with delay time of 2.8 μs) and exhibits superb ignition performances with violent explosion process, high combustion temperature (4636 °C) and successful ignition of B/KNO3 propellant, in comparison to SCB initiator. The strategy provides promising route to introduce nano reactive particles into various functional energy-demanding systems for potential energetic applications.