Endothelial response boosted by platelet lysate: the involvement of calcium toolkit

Int J Mol Sci. 2020 Jan 26;21(3):808. doi: 10.3390/ijms21030808.

Abstract

Wound repair is a dynamic process during which crucial signaling pathways are regulated by growth factors and cytokines released by several kinds of cells directly involved in the healing process. However, the limited applications and heterogeneous clinical results of single growth factors in wound healing encouraged the use of a mixture of bioactive molecules such as platelet derivatives for best results in wound repair. An interesting platelet derivative, obtained from blood samples, is platelet lysate (PL), which has shown potential clinical application. PL is obtained from freezing and thawing of platelet-enriched blood samples. Intracellular calcium (Ca2+) signals play a central role in the control of endothelial cell survival, proliferation, motility, and differentiation. We investigated the role of Ca2+ signaling in the PL-driven endothelial healing process. In our experiments, the functional significance of Ca2+ signaling machinery was highlighted performing the scratch wound assay in presence of different inhibitors or specific RNAi. We also pointed out that the PL-induced generation of intracellular ROS (reactive oxygen species) via NOX4 (NADPH oxidase 4) is necessary for the activation of TRPM2 and the resulting Ca2+ entry from the extracellular space. This is the first report of the mechanism of wound repair in an endothelial cell model boosted by the PL-induced regulation of [Ca2+]i.

Keywords: ROS; cell calcium; endothelial cells; platelet lysate; wound repair.

MeSH terms

  • Animals
  • Blood Platelets / chemistry*
  • Calcium Signaling*
  • Cell Differentiation
  • Cell Line, Transformed
  • Cell Movement
  • Cell Proliferation
  • Cell Survival
  • Endothelial Cells / metabolism*
  • Endothelium, Vascular / metabolism*
  • Mice