Inorganic Nanotube Mesophases Enable Strong Self-Healing Fibers

ACS Nano. 2020 May 26;14(5):5570-5580. doi: 10.1021/acsnano.9b09873. Epub 2020 Apr 21.

Abstract

The assembly of one-dimensional nanomaterials into macroscopic fibers can improve mechanical as well as multifunctional performance. Double-walled aluminogermanate imogolite nanotubes are geo-inspired analogues of carbon nanotubes, synthesized at low temperature, with complementary properties. Here, continuous imogolite-based fibers are wet-spun within a poly(vinyl alcohol) matrix. The lyotropic liquid crystallinity of the system produces highly aligned fibers with tensile stiffness and strength up to 24.1 GPa (14.1 N tex-1) and 0.8 GPa (0.46 N tex-1), respectively. Significant enhancements over the pure polymer control are quantitatively attributed to both matrix refinement and direct nanoscale reinforcement, by fitting an analytical model. Most intriguingly, imogolite-based fibers show a high degree of healability via evaporation-induced self-assembly, recovering up to 44% and 19% of the original fiber tensile stiffness and strength, respectively. This recovery at high absolute strength highlights a general strategy for the development of high-performance healable fibers relevant to composite structures and other applications.

Keywords: composites; evaporation induced self-assembly; inorganic nanotubes; polymer fibers; self-healing.