Protease-sensitive atelocollagen hydrogels promote healing in a diabetic wound model

J Mater Chem B. 2016 Dec 7;4(45):7249-7258. doi: 10.1039/c6tb02268e. Epub 2016 Oct 27.

Abstract

The design of exudate-managing wound dressings is an established route to accelerated healing, although such design remains a challenge from material and manufacturing standpoints. Aiming towards the clinical translation of knowledge gained in vitro with highly-swollen rat tail collagen hydrogels, this study investigated the healing capability in a diabetic mouse wound model of telopeptide-free, protease-inhibiting collagen networks. 4-Vinylbenzylation and UV irradiation of type I atelocollagen (AC) led to hydrogel networks with chemical and macroscopic properties comparable to previous collagen analogues, attributable to similar lysine content and dichroic properties. After 4 days in vitro, hydrogels induced nearly 50 RFU% reduction in matrix metalloproteinase (MMP)-9 activity, whilst showing less than 20 wt% mass loss. After 20 days in vivo, dry networks promoted 99% closure of 10 × 10 mm full thickness wounds and accelerated neo-dermal tissue formation compared to Mepilex®. This collagen system can be equipped with multiple, customisable properties and functions key to personalised chronic wound care.