Bionic 3D printed corals

Nat Commun. 2020 Apr 9;11(1):1748. doi: 10.1038/s41467-020-15486-4.

Abstract

Corals have evolved as optimized photon augmentation systems, leading to space-efficient microalgal growth and outstanding photosynthetic quantum efficiencies. Light attenuation due to algal self-shading is a key limiting factor for the upscaling of microalgal cultivation. Coral-inspired light management systems could overcome this limitation and facilitate scalable bioenergy and bioproduct generation. Here, we develop 3D printed bionic corals capable of growing microalgae with high spatial cell densities of up to 109 cells mL-1. The hybrid photosynthetic biomaterials are produced with a 3D bioprinting platform which mimics morphological features of living coral tissue and the underlying skeleton with micron resolution, including their optical and mechanical properties. The programmable synthetic microenvironment thus allows for replicating both structural and functional traits of the coral-algal symbiosis. Our work defines a class of bionic materials that is capable of interacting with living organisms and can be exploited for applied coral reef research and photobioreactor design.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Anthozoa / physiology*
  • Anthozoa / radiation effects
  • Bionics / methods*
  • Conservation of Natural Resources / methods
  • Coral Reefs*
  • Ecosystem
  • Light
  • Microalgae / physiology*
  • Microalgae / radiation effects
  • Photosynthesis / radiation effects
  • Printing, Three-Dimensional
  • Symbiosis / radiation effects

Associated data

  • figshare/10.6084/m9.figshare.11911197.v1