Foliar Glycine Betaine or Hydrogen Peroxide Sprays Ameliorate Waterlogging Stress in Cape Gooseberry

Plants (Basel). 2020 May 19;9(5):644. doi: 10.3390/plants9050644.

Abstract

Exogenous glycine betaine (GB) or hydrogen peroxide (H2O2) application has not been explored to mitigate waterlogging stress in Andean fruit trees. The objective of this study was to evaluate foliar GB or H2O2 application on the physiological behavior of Cape gooseberry plants under waterlogging. Two separate experiments were carried out. In the first trial, the treatment groups were: (1) plants without waterlogging and with no foliar applications, (2) plants with waterlogging and without foliar applications, and (3) waterlogged plants with 25, 50, or 100 mM of H2O2 or GB, respectively. The treatments in the second trial were: (1) plants without waterlogging and with no foliar applications, (2) plants with waterlogging and without foliar applications, and (3) waterlogged plants with 100 mM of H2O2 or GB, respectively. In the first experiment, plants with waterlogging and with exogenous GB or H2O2 applications at a dose of 100 mM showed higher leaf water potential (-0.5 Mpa), dry weight (1.0 g), and stomatal conductance (95 mmol·m-2·s-1) values. In the second experiment, exogenously supplied GB or H2O2 also increased the relative growth rate, and leaf photosynthesis mitigating waterlogging stress. These results show that short-term GB or H2O2 supply can be a tool in managing waterlogging in Cape gooseberry.

Keywords: Physalis peruviana L.; hypoxia; leaf gas exchange; organic compound; plant growth; waterlogging tolerance.