Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought

Nat Ecol Evol. 2020 Aug;4(8):1075-1083. doi: 10.1038/s41559-020-1217-3. Epub 2020 Jun 15.

Abstract

The frequency and intensity of droughts have increased over the decades, leading to increased forest decline. The response of forest to drought can be evaluated by both its sensitivity to drought (resistance) and its post-drought recovery rate (resilience). However, it remains uncertain how drought resistance and resilience of forests change over time under climate change. We assessed the spatiotemporal dynamics of forest resistance and resilience to drought over the past century (1901-2015) with global tree ring data records from 2,935 sites, in conjunction with plant trait data. We found that gymnosperms and angiosperms showed different spatial patterns of drought resistance and resilience, driven by variations in eco-physiological traits. Resistance and resilience also varied with drought seasonal timing. Surprisingly, we found that the trade-off between resistance and resilience for gymnosperms, previously reported only spatially, also occurred at the temporal scale. In particular, drought resilience markedly increased, but resistance decreased, for gymnosperms between 1950-1969 and 1990-2009, indicating that previous model simulations assuming invariant resistance may have underestimated the impacts of drought on gymnosperm-dominated forests under future climate change.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Climate Change
  • Cycadopsida*
  • Droughts*
  • Forests
  • Trees