Gut microbiota maturation during early human life induces enterocyte proliferation via microbial metabolites

BMC Microbiol. 2020 Jul 11;20(1):205. doi: 10.1186/s12866-020-01892-7.

Abstract

Background: The intestinal tract undergoes a period of cellular maturation during early life, primarily characterized by the organization of epithelial cells into specialized crypt and villus structures. These processes are in part mediated by the acquisition of microbes. Infants delivered at term typically harbor a stable, low diversity microbiota characterized by an overrepresentation of various Bacilli spp., while pre-term infants are colonized by an assortment of bacteria during the first several weeks after delivery. However, the functional effects of these changes on intestinal epithelium homeostasis and maturation remain unclear. To study these effects, human neonate feces were obtained from term and pre-term infants. Fecal 16S rDNA sequencing and global untargeted LC-MS were performed to characterize microbial composition and metabolites from each population. Murine enteral organoids (enteroids) were cultured with 0.22 μm filtered stool supernatant pooled from term or pre-term infants.

Results: Term and pre-term microbial communities differed significantly from each other by principle components analysis (PCoA, PERMANOVA p < 0.001), with the pre-term microbiome characterized by increased OTU diversity (Wilcox test p < 0.01). Term communities were less diverse and dominated by Bacilli (81.54%). Pre-term stools had an increased abundance of vitamins, amino acid derivatives and unconjugated bile acids. Pathway analysis revealed a significant increase in multiple metabolic pathways in pre-term samples mapped to E. coli using the KEGG database related to the fermentation of various amino acids and vitamin biosynthesis. Enteroids cultured with supernatant from pre-term stools proliferated at a higher rate than those cultured with supernatant from term stools (cell viability: 207% vs. 147.7%, p < 0.01), grew larger (area: 81,189μm2 vs. 41,777μm2, p < 0.001), and bud at a higher rate (6.5 vs. 4, p < 0.01). Additionally, genes involved in stem cell proliferation were upregulated in pre-term stool treated enteroid cultures (Lgr5, Ephb2, Ascl2 Sox9) but not term stool treated enteroids.

Conclusions: Our findings indicate that microbial metabolites from the more diverse gut microbiome associated with pre-term infants facilitate stem cell proliferation. Therefore, perturbations of the pre-term microbiota may impair intestinal homeostasis.

Keywords: Bacteria; Bile acid; Epithelial cells; Intestine; Metabolism; Network; Stem cells.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Animals, Newborn
  • Bacteria / chemistry
  • Bacteria / classification*
  • Bacteria / genetics
  • Bacteria / isolation & purification
  • Biomarkers / metabolism
  • Cell Proliferation
  • DNA, Bacterial / genetics
  • DNA, Ribosomal / genetics
  • Enterocytes / cytology*
  • Enterocytes / microbiology
  • Feces / microbiology
  • Gastrointestinal Microbiome
  • Gene Expression Regulation
  • Humans
  • Infant, Newborn
  • Metabolomics / methods*
  • Mice
  • Organ Culture Techniques
  • Organoids / chemistry
  • Organoids / cytology
  • Organoids / microbiology
  • Phylogeny
  • Premature Birth / microbiology*
  • RNA, Ribosomal, 16S / genetics*
  • Term Birth

Substances

  • Biomarkers
  • DNA, Bacterial
  • DNA, Ribosomal
  • RNA, Ribosomal, 16S