Brazilian artisanal cheeses are rich and diverse sources of nonstarter lactic acid bacteria regarding technological, biopreservative, and safety properties-Insights through multivariate analysis

J Dairy Sci. 2020 Sep;103(9):7908-7926. doi: 10.3168/jds.2020-18194. Epub 2020 Jul 16.

Abstract

In this study a total of 220 isolates of lactic acid bacteria (LAB) recovered from 10 types of Brazilian artisanal cheeses marketed in 4 main regions of Brazil were evaluated regarding their safety and ability to produce diacetyl (a precursor of aromatic compounds), exopolysaccharides (EPS; from different sugar sources), and antagonistic activity against Listeria monocytogenes and Staphylococcus aureus. The results indicated that 131 isolates (59.6%) were classified as strong (40.5%) and moderate (19.1%) diacetyl producers; 28 isolates (12.7%) stood out due to their remarkable production of EPS from different sugars, including sucrose (3.2%), fructose (2.3%), lactose (2.3%), and glucose (6%). Furthermore, 94.1% and 95.9% of isolates presented antagonistic activity against S. aureus and L. monocytogenes, respectively, even though only 27 isolates (12.3%) exhibited positive results in the bacteriocin production test. None of the isolates tested presented hemolytic activity, and 117 were classified as safe, due to their intrinsic resistance to a maximum of 4 different antibiotics. The data obtained for assessment of antibiogram profile and technological potential (moderate and high production of diacetyl, EPS, and bacteriocins) were submitted to a multiple correspondence analysis to correlate them with the cheese of isolation. Regarding the antimicrobial profile of LAB strains, it was possible to verify an association between isolates from Minas artisanal cheeses from Araxá and resistance to tetracycline; Minas artisanal cheeses from Serro and resistance to erythromycin; Coalho and Minas artisanal cheese from Cerrado and resistance to penicillin; and isolates from Serrano and Colonial cheeses with clindamycin and ceftazidime resistance. Although the susceptibility of strains to these antibiotics was considered high (71.8-80.5%), these data may be related to the horizontal transfer of genes in the production chain of these cheeses. Results of multiple correspondence analysis also showed that isolates with antagonistic activity were mostly isolated from Manteiga, Colonial, and Coalho cheeses. The isolates with high or moderate EPS-producer ability from sucrose, glucose, and fructose were mainly associated with Minas artisanal cheeses from Cerrado. In contrast, isolates with high or moderate EPS-producer ability from lactose were isolated from Serrano, Minas artisanal cheeses from Canastra, and Campo das Vertentes microregions. Finally, isolates from Minas artisanal cheeses (from Araxá microregion), Coalho, and Caipira cheeses were associated with moderate/high diacetyl production. To the best of the authors' knowledge, this study provides, for the first time, data indicating that the dominant technological, biopreservative, and safety properties of LAB isolates can be correlated with the type of Brazilian artisanal cheeses, which denotes its singularity. This knowledge is of utmost relevance for the development of starter or adjunct cultures with tailored properties.

Keywords: adjunct cultures; fermented dairy foods; food safety; multivariate analysis; ripened cheese.

MeSH terms

  • Animals
  • Anti-Bacterial Agents / pharmacology
  • Bacteriocins
  • Brazil
  • Cheese / analysis
  • Cheese / microbiology*
  • Food Microbiology*
  • Food Safety
  • Lactobacillales / drug effects
  • Lactobacillales / isolation & purification*
  • Listeria monocytogenes / physiology
  • Microbial Sensitivity Tests
  • Multivariate Analysis
  • Staphylococcus aureus / isolation & purification
  • Staphylococcus aureus / physiology

Substances

  • Anti-Bacterial Agents
  • Bacteriocins