RACK7 recognizes H3.3G34R mutation to suppress expression of MHC class II complex components and their delivery pathway in pediatric glioblastoma

Sci Adv. 2020 Jul 17;6(29):eaba2113. doi: 10.1126/sciadv.aba2113. eCollection 2020 Jul.

Abstract

Histone H3 point mutations have been identified in incurable pediatric brain cancers, but the mechanisms through which these mutations drive tumorigenesis are incompletely understood. Here, we provide evidence that RACK7 (ZMYND8) recognizes the histone H3.3 patient mutation (H3.3G34R) in vitro and in vivo. We show that RACK7 binding to H3.3G34R suppresses transcription of CIITA, which is the master regulator of MHC (major histocompatibility complex) class II molecules and genes involved in vesicular transport of MHC class II molecules to the cell surface, resulting in suppression of MHC class II molecule expression and transport. CRISPR-based knock-in correction of the H3.3G34R mutation in human pediatric glioblastoma (pGBM) cells significantly reduces overall RACK7 chromatin binding and derepresses the same set of genes as does knocking out RACK7 in the H3.3G34R pGBM cells. By demonstrating that H3.3G34R and RACK7 work together, our findings suggest a potential molecular mechanism by which H3.3G34R promotes cancer.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Brain Neoplasms* / genetics
  • Child
  • Glioblastoma* / genetics
  • Histocompatibility Antigens Class II* / genetics
  • Histocompatibility Antigens Class II* / metabolism
  • Histones* / genetics
  • Histones* / metabolism
  • Humans
  • Mutation
  • Tumor Suppressor Proteins* / genetics

Substances

  • Histocompatibility Antigens Class II
  • Histones
  • Tumor Suppressor Proteins
  • ZMYND8 protein, human