Capacitive sensor based on molecularly imprinted polymers for detection of the insecticide imidacloprid in water

Sci Rep. 2020 Sep 2;10(1):14479. doi: 10.1038/s41598-020-71325-y.

Abstract

This manuscript reports on the development of a capacitive sensor for the detection of imidacloprid (IMD) in water samples based on molecularly imprinted polymers (MIPs). MIPs used as recognition elements were synthesized via a photo-initiated emulsion polymerization. The particles were carefully washed using a methanol (MeOH) /acetic acid mixture to ensure complete template removal and were then dried. The average size of the obtained particles was less than 1 µm. The imprinting factor (IF) for IMD was 6 and the selectivity factor (α) for acetamiprid, clothianidin, thiacloprid and thiamethoxam were 14.8, 6.8, 7.1 and 8.2, respectively. The particles were immobilized on the surface of a gold electrode by electropolymerization. The immobilized electrode could be spontaneously regenerated using a mixture of MeOH/10 mM of phosphate buffer (pH = 7.2)/triethylamine before each measurement and could be reused for 32 times. This is the first-time that automated regeneration was introduced as part of a sensing platform for IMD detection. The developed sensor was validated by the analysis of artificially spiked water samples. Under the optimal conditions, the linearity was in the range of 5-100 µM, with a limit of detection (LOD) of 4.61 µM.

Publication types

  • Research Support, Non-U.S. Gov't