Target-Specific Superparamagnetic Hydrogel with Excellent pH Sensitivity and Reversibility: A Promising Platform for Biomedical Applications

ACS Omega. 2020 Aug 20;5(34):21768-21780. doi: 10.1021/acsomega.0c02817. eCollection 2020 Sep 1.

Abstract

Superparamagnetism has been widely used for many biomedical applications, such as early detection of inflammatory cancer and diabetes, magnetic resonance imaging (MRI), hyperthermia, etc., whereas incorporation of superparamagnetism in stimulus-responsive hydrogels has now gained substantial interest and attention for application in these fields. Recently, pH-responsive superparamagnetic hydrogels showing the potential use in disease diagnosis, biosensors, polymeric drug carriers, and implantable devices, have been developed based on the fact that pH is an important environmental factor in the body and some disease states manifest themselves by a change in the pH value. However, improvement in pH sensitivity of magnetic hydrogels is a dire need for their practical applications. In this study, we report the distinctly high pH sensitivity of new synthesized dual-responsive magnetic hydrogel nanocomposites, which was accomplished by copolymerization (free-radical polymerization) of two pH-sensitive monomers, acrylic acid (AA) and vinylsulfonic acid (VSA) with an optimum ratio, in the presence of presynthesized superparamagnetic iron oxide nanoparticles (Fe3O4(OH) x ). The monomers contain pH-sensitive functional groups (COO- and SO3 - for AA and VSA, respectively), and they have also been widely used as biomaterials because of the good biocompatibility. The pH sensitivity of the superparamagnetic hydrogel, poly(acrylic acid-co-vinylsulfonic acid), PAAVSA/Fe3O4, was investigated by swelling studies at different pH values from pH 7 to 1.4. Distinct pH reversibility of the system was also demonstrated through swelling/deswelling analysis. Thermal stability, chemical configuration, magnetic response, and structural properties of the system have been explored by suitable characterization techniques. Furthermore, the study reveals a pH-responsive significant change in the overall morphology and packing fraction of iron oxide nanoparticles in PAAVSA/Fe3O4 via energy-dispersive X-ray (EDX) elemental mapping with the field emission scanning electron microscopy (FESEM) study (for freeze-dried PAAVSA/Fe3O4, swelled at different pH values), implying a drastic change in susceptibility and induced saturation magnetization of the system. These important features could be easily utilized for the purpose of diagnosis using magnetic probe and/or impedance analysis techniques.