Enhanced Electron-Phonon Coupling for Charge-Density-Wave Formation in La_{1.8-x}Eu_{0.2}Sr_{x}CuO_{4+δ}

Phys Rev Lett. 2020 Aug 28;125(9):097002. doi: 10.1103/PhysRevLett.125.097002.

Abstract

Charge density wave (CDW) correlations are prevalent in all copper-oxide superconductors. While CDWs in conventional metals are driven by coupling between lattice vibrations and electrons, the role of the electron-phonon coupling (EPC) in cuprate CDWs is strongly debated. Using Cu L_{3} edge resonant inelastic x-ray scattering, we study the CDW and Cu-O bond-stretching phonons in the stripe-ordered cuprate La_{1.8-x}Eu_{0.2}Sr_{x}CuO_{4+δ}. We investigate the interplay between charge order and EPC as a function of doping and temperature and find that the EPC is enhanced in a narrow momentum region around the CDW ordering vector. By detuning the incident photon energy from the absorption resonance, we extract an EPC matrix element at the CDW ordering vector of M≃0.36 eV, which decreases to M≃0.30 eV at high temperature in the absence of the CDW. Our results suggest a feedback mechanism in which the CDW enhances the EPC which, in turn, further stabilizes the CDW.