Ultralight and robust aerogels based on nanochitin towards water-resistant thermal insulators

Carbohydr Polym. 2020 Nov 15:248:116755. doi: 10.1016/j.carbpol.2020.116755. Epub 2020 Jul 13.

Abstract

The development of lightweight, strong and high-performance thermal insulators from renewable biomass are highly desired for sustainable development. Here, ultralight aerogels based on renewable nanochitin with outstanding mechanical properties, excellent water-resistant, and promising thermal insulation properties are fabricated. The pristine nanochitin aerogels (PNCAs) assembled from mechanically strong carboxylated chitin nanorods are firstly prepared through acid-induced gelation and supercritical drying. The resultant PNCAs present tunable density (10-50 mg/cm3) and strong mechanical stiffness (the specific compression modulus of 30.2 MPa cm3/g) combining with low thermal conductivity (27.2 mW/m K). After a facile silylation modification, the silylated nanochitin aerogels (SNCAs) exhibit hydrophobic behavior (contact angle >130°), improved compression performance (the specific compression modulus of 65 MPa cm3/g), and promising thermal insulation property (30.5-35.8 mW/m K). Moreover, the silylated aerogel shows a negligible loss of mechanical performance when exposed to water for 12 h at 35 °C.

Keywords: Aerogel; Mechanical robust; Nanochitin; Self-assembly; Thermal insulation.