Association between Mitochondrial DNA Sequence Variants and V˙O2 max Trainability

Med Sci Sports Exerc. 2020 Nov;52(11):2303-2309. doi: 10.1249/MSS.0000000000002390.

Abstract

Purpose: We designed the study to determine whether mitochondrial DNA (mtDNA) haplogroup, sequence, and heteroplasmy differed between individuals previously characterized as low (LR) or high responders (HR) as defined by their maximal oxygen uptake response to a standardized aerobic exercise training program.

Methods: DNA was isolated from whole blood in subjects from the HERITAGE Family Study that were determined to be either HR (n = 15) or LR (n = 15). mtDNA was amplified by long-range polymerase chain reaction, then tagged with Nextera libraries and sequenced on a MiSeq instrument.

Results: Different mtDNA haplogroup subtypes were found in HR and LR individuals. Compared with HR subjects, significantly more LR subjects had variants in 13 sites, including 7 in hypervariable (HV) regions: HV2 (G185A: 0 vs 6, P = 0.02; G228A: 0 vs 5, P = 0.04; C295T: 0 vs 6; P = 0.04), HV3 (C462T: 0 vs 5, P = 0.04; T489C: 0 vs 5; P = 0.04), and HV1 (C16068T: 0 vs 6, P = 0.02; T16125C: 0 vs 6, P = 0.02). Remaining variants were in protein coding genes, mtND1 (1 vs 8, P = 0.02), mtND3 (A10397G: 0 vs 5, P = 0.04), mtND4 (A11250G: 1 vs 8, P = 0.02), mtND5 (G13707A: 0 vs 5, P = 0.04), and mtCYTB (T14797C: 0 vs 5, P = 0.04; C15451A: 1 vs 8, P = 0.02). Average total numbers of heteroplasmies (P = 0.83) and frequency of heteroplasmies (P = 0.05) were similar between the groups.

Conclusions: Our findings provide specific sites across the mitochondrial genome that may be related to maximal oxygen uptake trainability.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adolescent
  • Adult
  • DNA, Mitochondrial / genetics*
  • Exercise / physiology*
  • Genome, Mitochondrial*
  • Healthy Volunteers
  • Humans
  • Male
  • Oxygen Consumption / physiology*
  • Young Adult

Substances

  • DNA, Mitochondrial