Improved Diagnostic Accuracy of Bone Metastasis Detection by Water-HAP Associated to Non-contrast CT

Diagnostics (Basel). 2020 Oct 20;10(10):853. doi: 10.3390/diagnostics10100853.

Abstract

We examined whether water-hydroxyapatite (HAP) images improve the diagnostic accuracy of bone metastasis compared with non-contrast CT alone. We retrospectively evaluated dual-energy computed tomography (DECT) images of 83 cancer patients (bone metastasis, 31; without bone metastasis, 52) from May 2018 to June 2019. Initially, two evaluators examined for bone metastasis on conventional CT images. In the second session, both CT and CT images plus water-HAP images on DECT. The confidence of bone metastasis was scored from 1 (benign) to 5 (malignant). The sensitivity, specificity, positive predictive values, and negative predictive values for both modalities were calculated based on true positive and negative findings. The intra-observer area under curve (AUC) for detecting bone metastasis was compared by receiver operating characteristic analysis. Kappa coefficient calculated the inter-observer agreement. In conventional CT images, sensitivity, specificity, positive predictive value, and negative predictive value of raters 1 and 2 for the identification of bone metastases were 0.742 and 0.710, 0.981 and 0.981, 0.958 and 0.957, and 0.864 and 0.850, respectively. In water-HAP, they were 1.00 and 1.00, 0.981 and 1.00, 0.969 and 1.00, and 1.00 and 1.00, respectively. In CT, AUCs were 0.861 and 0.845 in each observer. On water-HAP images, AUCs were 0.990 and 1.00. Kappa coefficient was 0.964 for CT and 0.976 for water-HAP images. The combination of CT and water-HAP images significantly increased diagnostic accuracy for detecting bone metastasis. Water-HAP images on DECT may enable accurate initial staging, reduced radiation exposure, and cost.

Keywords: bone marrow; bone neoplasms; cone-beam computed tomography; dual-energy scanned projection radiography; neoplasm metastasis.