Self-Distinguishing and Stimulus-Responsive Carrier-Free Theranostic Nanoagents for Imaging-Guided Chemo-Photothermal Therapy in Small-Cell Lung Cancer

ACS Appl Mater Interfaces. 2020 Nov 18;12(46):51314-51328. doi: 10.1021/acsami.0c18273. Epub 2020 Nov 6.

Abstract

Lack of tumor targeting and low drug payload severely impedes various nanoagents further employed in small-cell lung cancer (SCLC). Therefore, how to develop a new targeting ligand and enhance drug payload has been an urgent need for SCLC therapy. Herein, we first sift and verify that capreomycin (Cm) has a high affinity toward CD56 receptors overexpressed on SCLC cells. Motivated by the concept of self-targeted drug delivery, Cm is selected as the specific targeting ligand toward CD56 receptors and chemodrug doxorubicin (Dox) is adopted to be covalently linked via the redox-responsive disulfide linkage. The synthesized self-distinguishing prodrug (Dox-ss-Cm) and FDA-approved photosensitizer indocyanine green (ICG) as structural motifs can be self-assembled into theranostic nanoagents (ICG@Dox-ss-Cm NPs) within an aqueous solution. Such carrier-free nanoagents with high drug payload can exert targeted on-demand drug release under multiple stimuli of intracellular lysosomal acidity, glutathione (GSH), and an external near-infrared (NIR) laser. Besides, our nanoagents can be specifically self-targeted to SCLC sites in vivo and self-distinguishing via SCLC cells in vitro; thus, they decrease the undesirable effects on normal tissues and organs. Further in vitro and in vivo studies uniformly confirm that such nanoagents show highly synergistic effects for SCLC chemo-photothermal therapy (PTT) under the precise guidance of NIR fluorescence (NIRF)/photoacoustic (PA) imaging. Taken together, our work can provide a novel and promising strategy for the targeted treatment of SCLC.

Keywords: capreomycin; carrier-free nanoagents; chemo-photothermal therapy; multiresponse; self-distinguishing.

MeSH terms

  • Animals
  • Antibiotics, Antineoplastic / chemistry*
  • Antibiotics, Antineoplastic / pharmacology
  • Antibiotics, Antineoplastic / therapeutic use
  • CD56 Antigen / metabolism
  • Carcinoma, Small Cell / diagnostic imaging
  • Carcinoma, Small Cell / drug therapy
  • Carcinoma, Small Cell / pathology
  • Cell Line, Tumor
  • Cell Survival / drug effects
  • Doxorubicin / chemistry*
  • Doxorubicin / pharmacology
  • Doxorubicin / therapeutic use
  • Glutathione / chemistry
  • Glutathione / metabolism
  • Humans
  • Indocyanine Green / chemistry*
  • Indocyanine Green / pharmacology
  • Indocyanine Green / therapeutic use
  • Infrared Rays
  • Ligands
  • Lung Neoplasms / diagnostic imaging
  • Lung Neoplasms / drug therapy
  • Lung Neoplasms / pathology
  • Mice
  • Microscopy, Confocal
  • Nanoparticles / chemistry*
  • Nanoparticles / metabolism
  • Photosensitizing Agents / chemistry*
  • Photosensitizing Agents / pharmacology
  • Photosensitizing Agents / therapeutic use
  • Photothermal Therapy
  • Prodrugs / chemistry
  • Prodrugs / pharmacology
  • Prodrugs / therapeutic use
  • Transplantation, Heterologous

Substances

  • Antibiotics, Antineoplastic
  • CD56 Antigen
  • Ligands
  • Photosensitizing Agents
  • Prodrugs
  • Doxorubicin
  • Glutathione
  • Indocyanine Green