Rapid recovery of methane yield in organic overloaded-failed anaerobic digesters through bioaugmentation with acclimatized microbial consortium

Sci Total Environ. 2021 Apr 10:764:144219. doi: 10.1016/j.scitotenv.2020.144219. Epub 2020 Dec 25.

Abstract

Acidification during anaerobic digestion (AD) due to organic overloading is one of the major reasons for process failures and decreased methane productivity in anaerobic digesters. Process failures can cause the anaerobic digesters to stall completely, prolong the digester recovery period, and inflict an increased operational cost on wastewater treatment plants and adverse impacts on the environment. This study investigated the efficacy of bioaugmentation by using acclimatized microbial consortium (AC) in recovering anaerobic digesters stalled due to acidosis. Overloading of digesters with food waste leachate (FWL) led to the accumulation of volatile fatty acids (11.30 g L-1) and a drop in pH (4.67), which resulted in process failure and a 22-fold decline in cumulative methane production compared to that in the initial phase. In the failure phase, the syntrophic and methanogenic activities of the anaerobic digester microbiota were disrupted by a significant decrease in the abundance of syntrophic populations such as Syntrophomonas, Syntrophorhabdus, Sedimentibacter, and Levilinea, and the phylum Euryarchaeota. Bioaugmentation of the failed digesters by adding AC along with the adjustment of pH resulted in the prompt recovery of methane productivity with a 15.7-fold higher yield than that in unaugmented control. The abundance of syntrophic bacteria Syntrophomonas and phylum Euryarchaeota significantly increased by 29- and 17-fold in the recovered digesters, respectively, which showed significant positive correlations with methane productivity. Methanosarcina and acetoclastic Methanosaeta played a major role in the recovery of the digesters; they were later replaced by hydrogenotrophic Methanoculleus. The increase in the abundance of genes associated with biomethanation contributed to digester recovery, according to the functional annotation of 16S rDNA amplicon data. Thus, bioaugmentation with AC could be a viable solution to recover digesters experiencing process failure due to organic overloading.

Keywords: Anaerobic digestion; Bioaugmentation; Microbial community; Organic overloading; Process failure; Process recovery.

MeSH terms

  • Anaerobiosis
  • Bioreactors
  • Food
  • Methane*
  • Microbial Consortia
  • Refuse Disposal*

Substances

  • Methane