Noncontact Physiological Measurement Using a Camera: A Technical Review and Future Directions

ACS Sens. 2021 Feb 26;6(2):321-334. doi: 10.1021/acssensors.0c02042. Epub 2020 Dec 1.

Abstract

Using a camera as an optical sensor to monitor physiological parameters has garnered considerable research interest in biomedical engineering in recent decades. Researchers have explored the use of a camera for monitoring a variety of physiological waveforms, together with the vital signs carried by these waveforms. Most of the obtained waveforms are related to the human respiratory and cardiovascular systems, and in addition of being indicative of overall health, they can also detect early signs of certain diseases. While using a camera for noncontact physiological signal monitoring offers the advantages of low cost and operational ease, it also has the disadvantages such as vulnerability to motion and lack of burden-free calibration solutions in some use cases. This study presents an overview of the existing camera-based methods that have been reported in recent years. It introduces the physiological principles behind these methods, signal acquisition approaches, various types of acquired signals, data processing algorithms, and application scenarios of these methods. It also discusses the technological gaps between the camera-based methods and traditional medical techniques, which are mostly contact-based. Furthermore, we present the manner in which noncontact physiological signal monitoring use has been extended, particularly over the recent years, to more day-to-day aspects of individuals' lives, so as to go beyond the more conventional use case scenarios. We also report on the development of novel approaches that facilitate easier measurement of less often monitored and recorded physiological signals. These have the potential of ushering a host of new medical and lifestyle applications. We hope this study can provide useful information to the researchers in the noncontact physiological signal measurement community.

Keywords: biomedical engineering; camera; contactless sensor; mobile health; noncontact monitoring; physiological signal monitoring; remote sensing; video processing; vital signs.

MeSH terms

  • Algorithms*
  • Humans
  • Monitoring, Physiologic