Challenges and outlook for convection-permitting climate modelling

Philos Trans A Math Phys Eng Sci. 2021 Apr 19;379(2195):20190547. doi: 10.1098/rsta.2019.0547. Epub 2021 Mar 1.

Abstract

Climate projections at very high resolution (kilometre-scale grid spacing) are becoming affordable. These 'convection-permitting' models (CPMs), commonly used for weather forecasting, better represent land-surface characteristics and small-scale processes in the atmosphere such as convection. They provide a step change in our understanding of future changes at local scales and for extreme weather events. For short-duration precipitation extremes, this includes capturing local storm feedbacks, which may modify future increases. Despite the major advance CPMs offer, there are still key challenges and outstanding science issues. Heavy rainfall tends to be too intense; there are challenges in representing land-surface processes; sub-kilometre scale processes still need to be parametrized, with existing parametrization schemes often requiring development for use in CPMs; CPMs rely on the quality of lateral boundary forcing and typically do not include ocean-coupling; large CPM ensembles that comprehensively sample future uncertainties are costly. Significant progress is expected over the next few years: scale-aware schemes may improve the representation of unresolved convective updrafts; work is underway to improve the modelling of complex land-surface fluxes; CPM ensemble experiments are underway and methods to synthesize this information with larger coarser-resolution model ensembles will lead to local-scale predictions with more comprehensive uncertainty context for user application. Large-domain (continental or tropics-wide) CPM climate simulations, potentially with additional earth-system processes such as ocean and wave coupling and terrestrial hydrology, are an exciting prospect, allowing not just improved representation of local processes but also of remote teleconnections. This article is part of a discussion meeting issue 'Intensification of short-duration rainfall extremes and implications for flash flood risks'.

Keywords: climate change; convection permitting; extreme weather; regional climate modelling.