New Insights into the N-S Bond Formation of a Sulfurized-Polyacrylonitrile Cathode Material for Lithium-Sulfur Batteries

ACS Appl Mater Interfaces. 2021 Mar 31;13(12):14230-14238. doi: 10.1021/acsami.0c22811. Epub 2021 Mar 22.

Abstract

Sulfurized polyacrylonitrile (S-cPAN) has been recognized as a particularly promising cathode material for lithium-sulfur (Li-S) batteries due to its ultra-stable cycling performance and high degree of sulfur utilization. Though the synthetic conditions and routes for modification of S-cPAN have been extensively studied, details of the molecular structure of S-cPAN remain yet unclear. Herein, a more reasonable molecular structure consisting of pyridinic/pyrrolic nitrogen (NPD/NPL) is proposed, based on the analysis of combined X-ray photoelectron spectroscopy, 13C/15N solid-state nuclear magnetic resonance, and density functional theory data. The coexistence of vicinal NPD/NPL entities plays a vital role in attracting S2 molecules and facilitating N-S bond formation apart from the generally accepted C-S bond in S-cPAN, which could explain the extraordinary electrochemical features of S-cPAN among various nitrogen-containing sulfurized polymers. This study provides new insights and a better understanding of structural details and relevant bond formation mechanisms in S-cPAN, providing a foundation for the design of new types of sulfurized cathode materials suitable for application in next-generation high-performance Li-S batteries.

Keywords: X-ray photoelectron spectroscopy; bond formation; reaction pathway; solid-state NMR; sulfurized polyacrylonitrile.