Hydroxyapatite coatings

Ann N Y Acad Sci. 1988:523:72-80. doi: 10.1111/j.1749-6632.1988.tb38501.x.

Abstract

Four coating techniques were evaluated to determine which is most suitable for producing a dense, highly adherent coating onto metallic and ceramic implant materials. Two of the selected coating methods have serious limitations for use in this particular application, and did not meet the specified criteria for satisfactory coating as defined in the initial stages of the study. For example, the dip coating-sintering technique was judged to be unsatisfactory because of the adverse effect of the high-temperature sintering cycle on the mechanical properties of the metallic substrate materials. These materials could not be used in load-bearing applications because of the excessive grain growth and loss of the wrought structure of both the commercially pure Ti and Ti-6Al-4V substrates, and the loss of ductility in the cast Co-Cr-Mo alloy. Another area of concern was that bond strength between the HA coating and the substrate was not high enough to insure that interfacial failure would not occur during the lifetime of the implant. The immersion-coating technique, in which the metal substrate is immersed into the molten ceramic, was shown in a previous study to be the best method of coating a bioreactive glass onto a Co-Cr-Mo implant. Heating HA above its melting temperature, however, caused undesired compositional and structural changes, and upon solidification very limited adherence between the modified ceramic and substrate material occurred under the conditions of this study. The HIP technique, in which the Ti powder substrate and the HA powder coating are sintered together in a high-pressure autoclave, shows great promise for the fabrication of high-quality composite implants. Initial studies have indicated that high-density Ti substrates with a small grain size that are well bonded to a dense HA coating can be produced under optimum conditions. Sintering and densification additives, such as SiO2 powder, do not appear to be necessary. The main drawback to this technique appears to be the reaction of the encapsulating material--whether soda glass, steel, or fused silica--to the HA coating. More extensive testing will necessary to determine the ideal conditions for the HIP technique, as efforts on this technique were discontinued in order to concentrate on the HIP technique, as efforts on this technique were discontinued in order to concentrate on the optimization of the sputter-coating technique so that coated implants for an animal study could be produced on schedule. Based on the results of this study, sputter coating appears to be the method of choice for forming a dense, adherent coating of HA onto a metal substrate.(ABSTRACT TRUNCATED AT 400 WORDS)

MeSH terms

  • Adhesiveness
  • Alloys*
  • Aluminum Oxide
  • Chemical Phenomena
  • Chemistry, Physical
  • Chromium Alloys
  • Hot Temperature
  • Hydroxyapatites*
  • Immersion
  • Surface Properties
  • Titanium
  • X-Ray Diffraction

Substances

  • Alloys
  • Chromium Alloys
  • Hydroxyapatites
  • titanium alloy (TiAl6V4)
  • Titanium
  • Aluminum Oxide