Greater increases in China's dryland ecosystem vulnerability in drier conditions than in wetter conditions

J Environ Manage. 2021 Aug 1:291:112689. doi: 10.1016/j.jenvman.2021.112689. Epub 2021 May 5.

Abstract

Dryland ecosystems are experiencing dramatic climate change, either drier or wetter. However, the differences in response amplitudes of dryland ecosystems to drier and wetter climates have not been frequently discussed, especially when using composite indicators at large scales. This study explores the changing patterns of ecosystem vulnerability in China's drylands by comprehensively considering exposure, sensitivity and resilience indicators using leaf area index (LAI) datasets and meteorological data within two periods from 1982 to 1999 (P1) and from 2000 to 2016 (P2). The results show that nearly 57% of China's drylands have experienced drier conditions in 2000-2016 based on the average aridity index (AI) values compared with the conditions in 1982-1999. Compared with the conditions in 1982-1999, ecosystem vulnerability has increased in 78% of dryland, and ecosystem resilience has decreased in 46% of the area in 2000-2016. The amplitudes of vulnerability increase are higher in drier conditions than in wetter conditions. Ecosystem resilience has obviously increased in wetter conditions but has decreased in drier conditions, especially in farming-pastoral ecotones with an obvious land use change. Consequently, vegetation-climate composite indicators provide a holistic pattern of China's dryland ecosystem response to climate change, and the decreased ecosystem resilience in drier conditions in northeast China should be a warning signal under the national vegetation greening background. This research highlights that the impact of drying on ecosystem resilience leads the response of ecosystems to drier environment.

Keywords: Aridity index; Drier; Leaf area index; Resilience; Vulnerability.

MeSH terms

  • Agriculture
  • China
  • Climate Change*
  • Ecosystem*