Bacillus subtilis High Cell Density Fermentation Using a Sporulation-Deficient Strain for the Production of Surfactin

Appl Microbiol Biotechnol. 2021 May;105(10):4141-4151. doi: 10.1007/s00253-021-11330-x. Epub 2021 May 15.

Abstract

Bacillus subtilis 3NA is a strain capable of reaching high cell densities. A surfactin producing sfp+ variant of this strain, named JABs32, was utilized in fed-batch cultivation processes. Both a glucose and an ammonia solution were fed to set a steady growth rate μ of 0.1 h-1. In this process, a cell dry weight of up to 88 g L-1 was reached after 38 h of cultivation, and surfactin titers of up to 26.5 g L-1 were detected in this high cell density fermentation process, achieving a YP/X value of 0.23 g g-1 as well as a qP/X of 0.007 g g-1 h-1. In sum, a 21-fold increase in surfactin titer was obtained compared with cultivations in shake flasks. In contrast to fed-batch operations using Bacillus subtilis JABs24, an sfp+ variant derived from B. subtilis 168, JABs32, reached an up to fourfold increase in surfactin titers using the same fed-batch protocol. Additionally, a two-stage feed process was established utilizing strain JABs32. Using an optimized mineral salt medium in this high cell density fermentation approach, after 31 h of cultivation, surfactin titers of 23.7 g L-1 were reached with a biomass concentration of 41.3 g L-1, thus achieving an enhanced YP/X value of 0.57 g g-1 as well as a qP/X of 0.018 g g-1 h-1. The mutation of spo0A locus and an elongation of AbrB in the strain utilized in combination with a high cell density fed-batch process represents a promising new route for future enhancements on surfactin production. KEY POINTS: • Utilization of a sporulation deficient strain for fed-batch operations • High cell density process with Bacillus subtilis for lipopeptide production was established • High titer surfactin production capabilities confirm highly promising future platform strain.

Keywords: Bacillus subtilis; Biosurfactant; Cyclic lipopeptide; Sporulation; Surfactin.

MeSH terms

  • Bacillus subtilis* / genetics
  • Bacillus subtilis* / metabolism
  • Cell Count
  • Culture Media
  • Fermentation
  • Lipopeptides* / metabolism
  • Peptides, Cyclic

Substances

  • Culture Media
  • Lipopeptides
  • Peptides, Cyclic