Recent Development of Nanomaterials-Based Cytosensors for the Detection of Circulating Tumor Cells

Biosensors (Basel). 2021 Aug 18;11(8):281. doi: 10.3390/bios11080281.

Abstract

The accurate analysis of circulating tumor cells (CTCs) holds great promise in early diagnosis and prognosis of cancers. However, the extremely low abundance of CTCs in peripheral blood samples limits the practical utility of the traditional methods for CTCs detection. Thus, novel and powerful strategies have been proposed for sensitive detection of CTCs. In particular, nanomaterials with exceptional physical and chemical properties have been used to fabricate cytosensors for amplifying the signal and enhancing the sensitivity. In this review, we summarize the recent development of nanomaterials-based optical and electrochemical analytical techniques for CTCs detection, including fluorescence, colorimetry, surface-enhanced Raman scattering, chemiluminescence, electrochemistry, electrochemiluminescence, photoelectrochemistry and so on.

Keywords: cancer biomarkers; circulating tumor cells; electrochemical biosensors; nanomaterials; optical biosensors.

Publication types

  • Review

MeSH terms

  • Aptamers, Nucleotide
  • Biosensing Techniques*
  • Cell Count
  • Electrochemical Techniques
  • Fluorescence
  • Humans
  • Nanostructures
  • Neoplastic Cells, Circulating*
  • Spectrum Analysis, Raman

Substances

  • Aptamers, Nucleotide