Zinc finger C3H1 domain-containing protein (ZFC3H1) evaluates the prognosis and treatment of prostate adenocarcinoma (PRAD): A study based on TCGA data

Bioengineered. 2021 Dec;12(1):5504-5515. doi: 10.1080/21655979.2021.1965442.

Abstract

The present study was aimed to evaluate the expression profile of Zinc finger C3H1 domain-containing protein (ZFC3H1) using bioinformatic analysis of public datasets from The Cancer Genome Atlas database (TCGA). The results showed that the expression levels of ZFC3H1 were notably lower than the corresponding non-cancerous tissues in prostate adenocarcinoma (PRAD), and patients in the high ZFC3H1-expression group showed poor survival. We hypothesized that the low expression of ZFC3H1 in tumor tissue might have be an inhibitory effect on the autoimmune system. We predicted the regulatory target and protein interaction partner network of ZFC3H1, and identified a PPI network composed of 26 node genes in PRAD. Furthermore, we found that the expression levels of MPHOSPH6 (encoding M-phase phosphoprotein 6) and MRPS31 (encoding mitochondrial ribosomal protein S31) were lower in PRAD tissues than in non-cancerous tissues, and the survival time of patients with high MPHOSPH6 and MRPS31 expression was poor. To further demonstrate the role of ZC3H1 in PRAD, we knocked-down the ZFC3H1 expression and found that the inhibition of ZFC3H1 significantly inhibited PRAD cell migration and invasion. Furthermore, ZFC3H1 siRNA treatment could reduce cell viability and increase the number of apoptotic cells in PRAD cells. Taken together, ZFC3H1 could represent a new marker for PRAD prognosis and provide a reference for the development of new therapies to treat PRAD.

Keywords: ZFC3H1; cell invasion; cell migration; computational biology; prognosis; prostate adenocarcinoma.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenocarcinoma* / diagnosis
  • Adenocarcinoma* / genetics
  • Adenocarcinoma* / mortality
  • Adenocarcinoma* / therapy
  • Cell Line, Tumor
  • Cell Movement / genetics
  • Computational Biology
  • Databases, Genetic
  • Humans
  • Male
  • Prognosis
  • Prostatic Neoplasms* / diagnosis
  • Prostatic Neoplasms* / genetics
  • Prostatic Neoplasms* / mortality
  • Prostatic Neoplasms* / therapy
  • Protein Interaction Maps / genetics
  • Transcription Factors / genetics*
  • Transcription Factors / metabolism
  • Transcriptome / genetics

Substances

  • Transcription Factors
  • ZFC3H1 protein, human

Grants and funding

This research was supported by Zhejiang Provincial Natural Science Foundation of China under Grant (No. LQ20H050001(Recipient: Hang Huang): collection, analysis, and (LY20H160013(Recipient: Wei Chen): writing the manuscript); Wenzhou Science and Technology Project ((Y20190066) (Recipient: Hang Huang): interpretation of data)