Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro

Proc Natl Acad Sci U S A. 1986 Apr;83(7):2114-7. doi: 10.1073/pnas.83.7.2114.

Abstract

The effects of hemodynamic forces upon vascular endothelial cell turnover were studied by exposing contact-inhibited confluent cell monolayers to shear stresses of varying amplitude in either laminar or turbulent flow. Laminar shear stresses (range, 8-15 dynes/cm2; 24 hr) induced cell alignment in the direction of flow without initiating the cell cycle. In contrast, turbulent shear stresses as low as 1.5 dynes/cm2 for as short a period as 3 hr stimulated substantial endothelial DNA synthesis in the absence of cell alignment, discernible cell retraction, or cell loss. The results of these in vitro experiments suggest that in atherosclerotic lesion-prone regions of the vascular system, unsteady blood flow characteristics, rather than the magnitude of wall shear stress per se, may be the major determinant of hemodynamically induced endothelial cell turnover.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Arteriosclerosis / pathology
  • Cattle
  • Cell Division
  • Cells, Cultured
  • Endothelium / cytology*
  • Hemodynamics
  • Rheology
  • Stress, Mechanical
  • Time Factors