Scavenger with Protonated Phosphite Ions for Incredible Nanoscale ZrO2-Abrasive Dispersant Stability Enhancement and Related Tungsten-Film Surface Chemical-Mechanical Planarization

Nanomaterials (Basel). 2021 Dec 4;11(12):3296. doi: 10.3390/nano11123296.

Abstract

For scaling-down advanced nanoscale semiconductor devices, tungsten (W)-film surface chemical mechanical planarization (CMP) has rapidly evolved to increase the W-film surface polishing rate via Fenton-reaction acceleration and enhance nanoscale-abrasive (i.e., ZrO2) dispersant stability in the CMP slurry by adding a scavenger to suppress the Fenton reaction. To enhance the ZrO2 abrasive dispersant stability, a scavenger with protonate-phosphite ions was designed to suppress the time-dependent Fenton reaction. The ZrO2 abrasive dispersant stability (i.e., lower H2O2 decomposition rate and longer H2O2 pot lifetime) linearly and significantly increased with scavenger concentration. However, the corrosion magnitude on the W-film surface during CMP increased significantly with scavenger concentration. By adding a scavenger to the CMP slurry, the radical amount reduction via Fenton-reaction suppression in the CMP slurry and the corrosion enhancement on the W-film surface during CMP performed that the W-film surface polishing rate decreased linearly and notably with increasing scavenger concentration via a chemical-dominant CMP mechanism. Otherwise, the SiO2-film surface polishing rate peaked at a specific scavenger concentration via a chemical and mechanical-dominant CMP mechanism. The addition of a corrosion inhibitor with a protonate-amine functional group to the W-film surface CMP slurry completely suppressed the corrosion generation on the W-film surface during CMP without a decrease in the W- and SiO2-film surface polishing rate.

Keywords: Fenton reaction; chemical-mechanical-planarization; corrosion; protonated phosphite-ion; scavenger; tungsten.