Immersive virtual-reality computer-assembly serious game to enhance autonomous learning

Virtual Real. 2021 Dec 23:1-18. doi: 10.1007/s10055-021-00607-1. Online ahead of print.

Abstract

Immersive virtual reality (VR) environments create a very strong sense of presence and immersion. Nowadays, especially when student isolation and online autonomous learning is required, such sensations can provide higher satisfaction and learning rates than conventional teaching. However, up until the present, learning outcomes with VR tools have yet to prove their advantageous aspects over conventional teaching. The project presents a VR serious game for teaching concepts associated with computer hardware assembly. These concepts are often included in any undergraduate's introduction to Computer Science. The learning outcomes are evaluated using a pre-test of previous knowledge, a satisfaction/usability test, and a post-test on knowledge acquisition, structured with questions on different knowledge areas. The results of the VR serious game are compared with another two learning methodologies adapted to online learning: (1) an online conventional lecture; and (2) playing the same serious game on a desktop PC. An extensive sample of students (n = 77) was formed for this purpose. The results showed the strong potential of VR serious games to improve student well-being during spells of confinement, due to higher learning satisfaction. Besides, ease of usability and the use of in-game tutorials are directly related with game-user satisfaction and performance. The main novelty of this research is related to academic performance. Although a very limited effect was noted for learning theoretical knowledge with the VR application in comparison with the other methodologies, this effect was significantly improved through visual knowledge, understanding and making connections between different concepts. It can therefore be concluded that the proposed VR serious game has the potential to increase student learning and therefore student satisfaction, by imparting a deeper understanding of the subject matter to students.

Supplementary information: The online version contains supplementary material available at 10.1007/s10055-021-00607-1.

Keywords: Active learning; Computer science; Educational game; Game engine; Head mounted display; Virtual reality; e-Learning.