The Two Non-Visual Arrestins Engage ERK2 Differently

J Mol Biol. 2022 Apr 15;434(7):167465. doi: 10.1016/j.jmb.2022.167465. Epub 2022 Jan 22.

Abstract

Arrestin binding to active phosphorylated G protein-coupled receptors terminates G protein coupling and initiates another wave of signaling. Among the effectors that bind directly to receptor-associated arrestins are extracellular signal-regulated kinases 1/2 (ERK1/2), which promote cellular proliferation and survival. Arrestins may also engage ERK1/2 in isolation in a pre- or post-signaling complex that is likely in equilibrium with the full signal initiation complex. Molecular details of these binary complexes remain unknown. Here, we investigate the molecular mechanisms whereby arrestin-2 and arrestin-3 (a.k.a. β-arrestin1 and β-arrestin2, respectively) engage ERK1/2 in pairwise interactions. We find that purified arrestin-3 binds ERK2 more avidly than arrestin-2. A combination of biophysical techniques and peptide array analysis demonstrates that the molecular basis in this difference of binding strength is that the two non-visual arrestins bind ERK2 via different parts of the molecule. We propose a structural model of the ERK2-arrestin-3 complex in solution using size-exclusion chromatography coupled to small angle X-ray scattering (SEC-SAXS). This binary complex exhibits conformational heterogeneity. We speculate that this drives the equilibrium either toward the full signaling complex with receptor-bound arrestin at the membrane or toward full dissociation in the cytoplasm. As ERK1/2 regulates cell migration, proliferation, and survival, understanding complexes that relate to its activation could be exploited to control cell fate.

Keywords: arrestin; extracellular signal-regulated kinase 2; protein scaffolds; protein–protein interactions; small-angle X-ray scattering.

MeSH terms

  • Mitogen-Activated Protein Kinase 1* / chemistry
  • Protein Binding
  • Scattering, Small Angle
  • X-Ray Diffraction
  • beta-Arrestin 1* / chemistry
  • beta-Arrestin 2* / chemistry

Substances

  • beta-Arrestin 1
  • beta-Arrestin 2
  • Mitogen-Activated Protein Kinase 1