A Novel Algorithm for Thickness Prediction in Incremental Sheet Metal Forming

Materials (Basel). 2022 Feb 4;15(3):1201. doi: 10.3390/ma15031201.

Abstract

Incremental sheet metal forming characterized as increased flexibility and local plastic deformation is well suitable for low-production-run manufacturing and a new sample trial production of complex shapes. Thickness thinning is still an obstacle to the application of incremental forming. In this study, a novel mathematical algorithm based on a non-uniform rational B-spline (NURBS) surface was proposed and implemented which focuses on predicting and calculating the final thickness for arbitrary parts in incremental forming. In order to evaluate the validity of the proposed model, the finite element simulation and forming experiments of three kinds of parts, such as truncated cones, truncated pyramids and ellipsoid parts, were conducted. The thickness of theoretical prediction was compared with that of finite element simulation and experiment, and good agreements were obtained. The results show that the proposed model and the method are effective and robust for predicting the thickness of the formed parts in incremental sheet metal forming.

Keywords: NURBS; incremental sheet metal forming; model; thickness prediction.