Pore Size of 3D-Printed Polycaprolactone/Polyethylene Glycol/Hydroxyapatite Scaffolds Affects Bone Regeneration by Modulating Macrophage Polarization and the Foreign Body Response

ACS Appl Mater Interfaces. 2022 May 11;14(18):20693-20707. doi: 10.1021/acsami.2c02001. Epub 2022 May 2.

Abstract

3D-printed porous bioactive ceramic scaffolds have been widely used in bone defect repair. However, material implantation is often accompanied by a foreign body response (FBR), which may affect host tissue regeneration. The physical properties of biomaterials, including shape, pore size, and porosity, control the relevant immune responses during tissue regeneration. To the best of our knowledge, the effect of the pore size of 3D-printed scaffolds on the immune response and bone-biomaterial integration has not been studied in vivo. Polycaprolactone/polyethylene glycol/hydroxyapatite (PCL/PEG/HA) bioactive scaffolds with different pore sizes, including 209.9 ± 77.1 μm (P200), 385.5 ± 28.6 μm (P400), and 582.1 ± 27.2 μm (P600), were prepared with a pneumatic extrusion 3D printer. Compared with other pore sizes, P600 significantly reduced the FBR and induced more M2 macrophage infiltration, vascular ingrowth, and new bone formation. Immunohistochemical staining revealed that the MyD88 protein might be involved in macrophage polarization-related signal transduction in response to the pore size. Based on these results, bone regeneration requires the active participation of the immune response, and the P600 PCL/PEG/HA scaffold is a preferable candidate for the repair of bone defects.

Keywords: 3D-printed scaffold; bone regeneration; foreign body response; macrophage polarization; pore size.

MeSH terms

  • Biocompatible Materials / chemistry
  • Bone Regeneration
  • Durapatite* / chemistry
  • Durapatite* / pharmacology
  • Foreign Bodies*
  • Humans
  • Macrophages
  • Polyesters / chemistry
  • Polyethylene Glycols
  • Porosity
  • Printing, Three-Dimensional
  • Tissue Engineering
  • Tissue Scaffolds / chemistry

Substances

  • Biocompatible Materials
  • Polyesters
  • polycaprolactone
  • Polyethylene Glycols
  • Durapatite