PEGylated Magnetite/Hydroxyapatite: A Green Nanocomposite for T2-Weighted MRI and Curcumin Carrying

Evid Based Complement Alternat Med. 2022 May 27:2022:1337588. doi: 10.1155/2022/1337588. eCollection 2022.

Abstract

Background: The design of new magnetic resonance imaging (MRI) contrast media with chemotherapy drug-carrying capacity has an important role in diagnostic and therapeutic purposes. This study aimed to synthesize a polyethylene glycol (PEG)-coated magnetite/hydroxyapatite nanocomposite as an MRI contrast agent investigate its curcumin loading/release properties and consider the cytotoxicity effect of the curcumin-loaded nanocomposite on different cell lines.

Materials and methods: PEGylated magnetite/hydroxyapatite (PMHA) nanocomposite was synthesized and characterized using X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, vibrating sample magnetometry, and energy dispersive X-ray analysis. MTT assay was performed to consider the A549, MCF-7, and MRC-5 cells toxicity of the PMHA and the curcumin-loaded nanocomposite. The r2 relaxivity of the nanocomposite was determined by an MRI device. The curcumin loading and its release from the nanocomposite at pH of 7.4 and 5.5 were investigated.

Results: The spherical nanocomposite showed an average size of 20 nm and a superparamagnetic property. PMHA nanocomposite was highly cytocompatible, while the curcumin-loaded nanocomposite showed significant cytotoxicity for A549 and a much higher toxic effect on MCF-7 cancer cells. The r2 relaxivity was measured as 120 mM-1S-1. The curcumin loading capacity of PMHA was 1.9 mg/g, and the curcumin release profile showed a pH-dependent sustained release of the anti-cancer drug that was higher for pH of 5.5.

Conclusion: The high r2 relaxivity of PMHA nanocomposite and sustained release of curcumin from the loaded one at the pH of tumor environment suggest that the nanocomposite is a potential candidate for T2-weighted MRI and cancer treatment.