Lamin-A/C Is Modulated by the Involvement of Histamine-Mediated Calcium/Calmodulin-Dependent Kinase II in Lung Cancer Cells

Int J Mol Sci. 2022 Aug 13;23(16):9075. doi: 10.3390/ijms23169075.

Abstract

Lamins are nuclear envelope proteins involved in various cellular functions, such as DNA modulation, cellular differentiation, and development. In this study, we investigate the role of histamine in lung cancer biology. Since it is known that lamin-A/C is negatively regulated in lung cancer, we hypothesize that histamine signaling is related to nuclear lamin-A/C regulation and cancer progression. Our findings reveal that histamine stimulation enhances lamin-A/C expression in lung cancer cells. Lamin-A/C expression is dependent on histamine-mediated intracellular calcium signaling and subsequent calcium/calmodulin-dependent kinase II (Ca/CaMKII) activation. The nuclear protein nestin, which stabilizes lamin-A/C expression, is also modulated by Ca/CaMKII. However, histamine-mediated lamin-A/C expression is independent of Akt/focal adhesion kinase or autophagy signaling. Histamine stimulation attenuates lung cancer motility in the presence of enhanced lamin-A/C expression. In conclusion, we propose a regulatory mechanism that accounts for the modulation of lamin-A/C levels through the involvement of Ca/CaMKII in cancer cells and provides molecular evidence of histamine signaling in lamin-A/C biology.

Keywords: Ca/calmodulin-dependent kinase II; calcium; histamine signaling; lamin-A/C; lung cancer cells.

MeSH terms

  • Calcium / metabolism
  • Calcium, Dietary
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2* / metabolism
  • Calmodulin / metabolism
  • Histamine* / pharmacology
  • Humans
  • Lamin Type A* / metabolism
  • Lung Neoplasms* / genetics
  • Phosphorylation

Substances

  • Calcium, Dietary
  • Calmodulin
  • LMNA protein, human
  • Lamin Type A
  • Histamine
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2
  • Calcium