Hollow carbon nanospheres embedded with stoichiometric γ-Fe2O3 and GdPO4: tuning the nanospheres for in vitro and in vivo size effect evaluation

Nanoscale Adv. 2022 Jan 20;4(5):1414-1421. doi: 10.1039/d1na00771h. eCollection 2022 Mar 1.

Abstract

The size modulation of hollow carbon nanospheres (HCSs) has attracted great interest in the contexts of cellular uptake, drug delivery and bioimaging. In this study, a facile fabrication method was specifically used to minimize all influencing factors except for the particle size. A series of nanoparticles of hollow carbon nanospheres embedded with magnetic resonance imaging (MRI) nanoagent γ-Fe2O3 and GdPO4 nanoparticles (Fe-Gd/HCS), were successfully prepared and applied to in vitro/vivo evaluation with well-defined sizes of ∼100 nm (Fe-Gd/HCS-S), ∼200 nm (Fe-Gd/HCS-M), and ∼300 nm (Fe-Gd/HCS-L), respectively. Then the in vitro size effect of Fe-Gd/HCS was systematically investigated by bio-TEM, CLSM, CCK-8 assay, and flow cytometry revealing that Fe-Gd/HCS could be internalized and the cellular uptake amounts increase with the decrease of size. Furthermore, the in vivo size-effect behavior of Fe-Gd/HCS (∼100 nm, ∼200 nm, ∼300 nm) was tracked by MRI technique, demonstrating that all Fe-Gd/HCS can distinguish the liver, in which Fe-Gd/HCS with the smallest particle size exhibited the best performance among these nanoparticles. By leveraging on these features, Fe-Gd/HCS-S (∼100 nm) was further chosen as a theranostic agent, preliminarily presenting its capability for multi-modal imaging and therapy.