The Controllable Ratio of the Polyaniline-Needle-Shaped Manganese Dioxide for the High-Performance Supercapacitor Application

Nanomaterials (Basel). 2022 Dec 25;13(1):101. doi: 10.3390/nano13010101.

Abstract

The nanohybrid development of metal oxide/conducting polymer as an energy storage material is an active research area, because of the device stability, conductive behavior, and easy fabrication. Herein, needle-like MnO2 was coupled with polyaniline fabricated through chemical polymerization followed by the hydrothermal process. The characterization results show that MnO2/polyaniline exhibited a needle-like morphology. Different characterization techniques such as X-ray diffraction patterns and scanning electron microscopy confirmed the formation of the MnO2/polyaniline nanohybrids. The electrochemical performance, including cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), specific capacitance (Csp), and cyclic stability, was examined using a three-electrode assembly cell. The optimized electrode displayed a Csp of 522.20 F g-1 at a current load of 1.0 A g-1 compared with the other electrodes. The developed synergism during MnO2/polyaniline fabrication provided enhanced conductive channels and stability during the charge-discharge process.

Keywords: Pani-MnO2; charge–discharge; cyclic stability; supercapacitor.