Modulation of tight junction structure in blood-brain barrier endothelial cells. Effects of tissue culture, second messengers and cocultured astrocytes

J Cell Sci. 1994 May:107 ( Pt 5):1347-57. doi: 10.1242/jcs.107.5.1347.

Abstract

Tight junctions between endothelial cells of brain capillaries are the most important structural elements of the blood-brain barrier. Cultured brain endothelial cells are known to loose tight junction-dependent blood-brain barrier characteristics such as macromolecular impermeability and high electrical resistance. We have directly analyzed the structure and function of tight junctions in primary cultures of bovine brain endothelial cells using quantitative freeze-fracture electron microscopy, and ion and inulin permeability. The complexity of tight junctions, defined as the number of branch points per unit length of tight junctional strands, decreased 5 hours after culture but thereafter remained almost constant. In contrast, the association of tight junction particles with the cytoplasmic leaflet of the endothelial membrane bilayer (P-face) decreased continuously with a major drop between 16 hours and 24 hours. The complexity of tight junctions could be increased by elevation of intracellular cAMP levels while phorbol esters had the opposite effect. On the other hand, the P-face association of tight junction particles was enhanced by elevation of cAMP levels and by coculture of endothelial cells with astrocytes or exposure to astrocyte-conditioned medium. The latter effect on P-face association was induced by astrocytes but not fibroblasts. Elevation of cAMP levels together with astrocyte-conditioned medium synergistically increased transendothelial electrical resistance and decreased inulin permeability of primary cultures, thus confirming the effects on tight junction structure and barrier function. P-face association of tight junction particles in brain endothelial cells may therefore be a critical feature of blood-brain barrier function that can be specifically modulated by astrocytes and cAMP levels. Our results suggest an important functional role for the cytoplasmic anchorage of tight junction particles for brain endothelial barrier function in particular and probably paracellular permeability in general.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Astrocytes / physiology
  • Astrocytes / ultrastructure
  • Blood-Brain Barrier / physiology*
  • Cattle
  • Culture Techniques
  • Endothelium, Vascular / physiology
  • Endothelium, Vascular / ultrastructure
  • Freeze Fracturing
  • Intercellular Junctions / physiology
  • Intercellular Junctions / ultrastructure*
  • Mice
  • Microscopy, Electron
  • Permeability
  • Rats
  • Second Messenger Systems / physiology