Selenium and cellular immunity. Evidence that selenoproteins may be encoded in the +1 reading frame overlapping the human CD4, CD8, and HLA-DR genes

Biol Trace Elem Res. 1995 Aug-Sep;49(2-3):85-95. doi: 10.1007/BF02788958.

Abstract

Selenium deficiency can lead to impaired immune function and reduced T-cell counts, as well as various specific disorders. Significantly, in ARC and AIDS patients, a progressive decline in plasma Se, paralleling T-cell loss, has been widely documented. Since evidence now suggests that there is an extremely high turnover of CD4+ T-cells in AIDS patients, with billions of new cells lost and replaced daily, any exceptional requirement for Se in lymphocytes could contribute to this progressive Se depletion. Thus, it may be significant that, overlapping the known genes in the +1 reading frame, the mRNAs of several T-cell associated genes (CD4, CD8, HLA-DR p33) have open reading frames (ORFs) with as many as 10 in-frame UGA codons (CD4, p33), a clustering that is highly improbable by chance alone, and reminiscent of selenoprotein P, the predominant plasma form of Se. The presence of these ORFs, along with potential stem-loop RNA structures displaying consensus selenocysteine insertion sequences, AUG(N)mAAA(N)nUGR, suggests that these mRNAs may encode selenoproteins, in addition to the known T-cell glycoproteins. If so, the roles of Se in the immune system may be more diverse than previously suspected.

Publication types

  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Amino Acid Sequence
  • Base Sequence
  • CD4 Antigens / genetics*
  • CD8 Antigens / genetics*
  • Codon / genetics
  • Computer Simulation
  • HIV-1 / genetics
  • HLA-DR Antigens / genetics
  • Humans
  • Immunity, Cellular
  • Lymphocyte Activation
  • Molecular Sequence Data
  • Open Reading Frames*
  • Protein Biosynthesis
  • Proteins / genetics*
  • Proteins / physiology
  • RNA, Messenger / genetics*
  • RNA, Messenger / metabolism
  • Selenium / blood
  • Selenium / deficiency*
  • Selenium / immunology
  • Selenoprotein P
  • Selenoproteins
  • T-Lymphocytes / cytology
  • T-Lymphocytes / metabolism

Substances

  • CD4 Antigens
  • CD8 Antigens
  • Codon
  • HLA-DR Antigens
  • Proteins
  • RNA, Messenger
  • Selenoprotein P
  • Selenoproteins
  • Selenium