Mutational analysis of the properties of caveolin-1. A novel role for the C-terminal domain in mediating homo-typic caveolin-caveolin interactions

J Biol Chem. 1997 Feb 14;272(7):4398-403. doi: 10.1074/jbc.272.7.4398.

Abstract

Caveolin is a principal structural component of caveolae membranes in vivo. Recently, a family of caveolin-related proteins has been identified; caveolin has been retermed caveolin-1. Caveolin family members share three characteristic properties: (i) detergent insolubility at low temperatures; (ii) self-oligomerization; and (iii) incorporation into low density Triton-insoluble fractions enriched in caveolae membranes. Here, we have used a deletion mutagenesis approach as a first step toward understanding which regions of caveolin-1 contribute to its unusual properties. Two caveolin-1 deletion mutants were created that lack either the C-terminal domain (Cav-1DeltaC) or the N-terminal domain (Cav-1DeltaN); these mutants were compared with the behavior of full-length caveolin-1 (Cav-1FL) expressed in parallel. Our results show that the N-terminal domain and membrane spanning segment are sufficient to form high molecular mass oligomers of caveolin-1. However, a complete caveolin-1 molecule is required for conveying detergent insolubility and incorporation into low density Triton-insoluble complexes. These data indicate that homo-oligomerization and an intact transmembrane are not sufficient to confer detergent insolubility, suggesting an unknown role for the C-terminal domain in this process. To better understand the role of the C-terminal domain, this region of caveolin-1 (residues 135-178) was expressed as a glutathione S-transferase fusion protein in Escherichia coli. Purified recombinant glutathione S-transferase-C-Cav-1 was found to stably interact with full-length caveolin-1 but not with the two caveolin-1 deletion mutants. These results suggest that the C-terminal domain interacts with both the N-terminal and C-terminal domains of an adjacent caveolin-1 homo-oligomer. This appears to be a specific homo-typic interaction, because the C-terminal domain of caveolin-1 failed to interact with full-length forms of caveolin-2 and caveolin-3. Homo-typic interaction of the C-terminal domain with an adjacent homo-oligomer could provide a mechanism for clustering caveolin-1 homo-oligomers while excluding other caveolin family members. This type of lateral segregation event could promote caveolae membrane formation and contribute to the detergent insolubility of caveolins-1, -2, and -3.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Biopolymers
  • Caveolin 1
  • Caveolin 2
  • Caveolin 3
  • Caveolins*
  • Cell Line
  • Cell Membrane / metabolism
  • Dogs
  • Membrane Proteins / genetics
  • Membrane Proteins / metabolism*
  • Mutagenesis
  • Polyethylene Glycols / pharmacology
  • Protein Binding
  • Sequence Deletion

Substances

  • Biopolymers
  • Caveolin 1
  • Caveolin 2
  • Caveolin 3
  • Caveolins
  • Membrane Proteins
  • Polyethylene Glycols