Oxidation-reduction properties of methylglyoxal-modified protein in relation to free radical generation

J Biol Chem. 1998 Sep 25;273(39):25272-8. doi: 10.1074/jbc.273.39.25272.

Abstract

Oxidation-reduction properties of methylglyoxal-modified protein in relation to free radical generation were investigated. Glycation of bovine serum albumin by methylglyoxal generated the protein-bound free radical, probably the cation radical of the cross-linked Schiff base, as observed in the reaction of methylglyoxal with L-alanine (Yim, H.-S., Kang, S.-O., Hah, Y. C., Chock, P. B., and Yim, M. B. (1995) J. Biol. Chem. 270, 28228-28233) or with Nalpha-acetyl-L-lysine. The glycated bovine serum albumin showed increased electrophoretic mobility suggesting that the basic residues, such as lysine, were modified by methylglyoxal. The glycated protein reduced ferricytochrome c to ferrocytochrome c in the absence of oxygen or added metal ions. This reduction of cytochrome c was accompanied by a large increase in the amplitude of the electron paramagnetic resonance signal originated from the protein-bound free radical. In addition, the glycated protein catalyzed the oxidation of ascorbate in the presence of oxygen, whereas the protein free radical signal disappeared. These results indicate that glycation of protein generates active centers for catalyzing one-electron oxidation-reduction reactions. This active center, which exhibits enzyme-like characteristic, was suggested to be the cross-linked Schiff base/the cross-linked Schiff base radical cation of the protein. It mimics the characteristics of the metal-catalyzed oxidation system. The glycated bovine serum albumin cross-linked further to the cytochrome c in the absence of methylglyoxal. The cross-linked cytochrome c maintains its oxidation-reduction properties. These results together indicate that glycated proteins accumulated in vivo provide stable active sites for catalyzing the formation of free radicals.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Ascorbic Acid / chemistry
  • Cytochrome c Group / chemistry
  • Free Radicals
  • Kinetics
  • Oxidation-Reduction
  • Pyruvaldehyde / chemistry*
  • Serum Albumin, Bovine / chemistry*

Substances

  • Cytochrome c Group
  • Free Radicals
  • Serum Albumin, Bovine
  • Pyruvaldehyde
  • Ascorbic Acid