Metabolic reserves and evolved stress resistance in Drosophila melanogaster

Physiol Zool. 1998 Sep-Oct;71(5):584-94. doi: 10.1086/515963.

Abstract

We have examined starvation and desiccation resistance in 43 outbred populations of Drosophila melanogaster that have diverged from a common ancestral population as a result of a variety of defined selection protocols. The populations differ up to 8.5-fold in desiccation resistance and up to 10-fold in starvation resistance. We used these populations to search for evolved physiological changes that might explain the differences in stress resistance. We examined two hypotheses for increased stress resistance that had been proposed previously in the literature: (1) that increments in starvation resistance are principally the result of differential lipid accumulation, and (2) that changes in glycogen accumulation play a role in evolved increases in resistance to desiccation stress. By quantifying desiccation resistance, starvation resistance, lipid content, and carbohydrate content in each of our populations of flies, we were able to demonstrate strong correlations between the capacity of the flies to resist starvation and the quantity of lipid or carbohydrate that the flies had stored. The strongest correlation (R2 = 0.99) was observed when the total energy content of both the lipid and carbohydrate stores was regressed against starvation resistance. These results demonstrate that the flies responded to selection for starvation resistance through a genetically determined increase in both lipid and carbohydrate storage. Similar analyses of the correlation between lipid storage or total energy storage and desiccation resistance revealed no significant correlations. Carbohydrate storage was significantly correlated with desiccation resistance in female but not in male flies. These results suggest that different forms of stress are resisted with distinct physiological mechanisms and that the evolutionary response of the flies to stress selection is specific to the stress imposed.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adaptation, Physiological*
  • Animals
  • Biological Evolution
  • Desiccation
  • Drosophila melanogaster / genetics
  • Drosophila melanogaster / physiology*
  • Energy Metabolism / genetics*
  • Female
  • Glycogen / metabolism
  • Lipid Metabolism
  • Male
  • Starvation
  • Water-Electrolyte Balance

Substances

  • Glycogen