Resistive Switching Memory Devices Based on Body Fluid of Bombyx mori L

Micromachines (Basel). 2019 Aug 16;10(8):540. doi: 10.3390/mi10080540.

Abstract

Resistive switching memory devices are strong candidates for next-generation data storage devices. Biological memristors made from renewable natural biomaterials are very promising due to their biocompatibility, biodegradability, and ecological benignity. In this study, a nonvolatile memristor was fabricated using the body fluid of Bombyx mori as the dielectric layer. The developed Al/Bombyx mori body fluid film/indium tin oxide (ITO) biomemristor exhibited bipolar resistive switching characteristics with a maximum on/off current ratio greater than 104. The device showed a retention time of more than 1 × 104 s without any signs of deterioration, thus proving its good stability and reliability. The resistive switching behavior of the Al/Bombyx mori body fluid film/ITO biological memristor is driven by the formation and breakage of conductive filaments formed by the migration of oxygen ions. This study confirms that Bombyx mori body fluid, a 100% natural, inexpensive, and abundant material, is a potential candidate as a nonvolatile biomemristor material with broad application prospects.

Keywords: Bombyx mori body fluid; biomemristor; natural biomaterial; resistive switching memory devices.