A Low-Profile Wideband Linear-To-Circular Polarization Conversion Slot Antenna Using Metasurface

Materials (Basel). 2020 Mar 5;13(5):1164. doi: 10.3390/ma13051164.

Abstract

A new low-profile wideband linear-to-circular polarization conversion microstrip slot antenna based on a metasurface for C-band satellite communication applications is proposed in this paper. The metasurface basically consists of four unit cells with parasitic square cross gaps arranged in a 2 × 2 layout. By loading the metasurface on the microstrip slot antenna, linearly polarized (LP) waves from the source antenna are converted into circularly polarized (CP) waves. Then, by etching three more parasitic square cross gaps in the middle of the metasurface, enhanced impedance bandwidth and axial ratio bandwidth (ARBW) are achieved. Furthermore, an equivalent circuit and a phase analysis are presented to explain how a wide ARBW is realized by the metasurface. A final model with an overall size of 36 × 36 × 3.5 mm3 (approximately 0.65λ0 × 0.65λ0 × 0.06λ0 at 5.5 GHz) was designed and fabricated. The measured S11 bandwidth and 3 dB ARBW were 39.25% from 4.28 GHz to 6.37 GHz and 17.77% from 5.18 GHz to 6.19 GHz, respectively. As a result, the proposed antenna shows great potential for satellite communication applications due to its low profile and compact structure, wide impedance bandwidth, and wide axial ratio bandwidth.

Keywords: low-profile; metasurface; microstrip slot antenna; polarization conversion; wideband.