A Sensitive FRET Biosensor Based on Carbon Dots-Modified Nanoporous Membrane for 8-hydroxy-2'-Deoxyguanosine (8-OHdG) Detection with Au@ZIF-8 Nanoparticles as Signal Quenchers

Nanomaterials (Basel). 2020 Oct 16;10(10):2044. doi: 10.3390/nano10102044.

Abstract

A sensitive fluorescence resonance energy transfer (FRET) biosensor is proposed to detect 8-hydroxy-2'-deoxyguanosine (8-OHdG), which is a typical DNA oxidation damage product excreted in human urine. The FRET biosensor was based on carbon dots (CDs)-modified nanoporous alumina membrane with CDs as fluorescence donors. Gold nanoparticles were encapsulated in zeolitic imidazolate framework-8 to form Au@ZIF-8 nanoparticles as signal quenchers. CDs and Au@ZIF-8 nanoparticles were biofunctionalized by 8-OHdG antibody. The capture of 8-OHdG on the membrane substrates can bring Au@ZIF-8 nanoparticles closely to CDs. With 350 nm excitation, the fluorescence of CDs was quenched by Au@ZIF-8 nanoparticles and FRET effect occurred. The quenching efficiency was analyzed. The limit of detection (LOD) was 0.31 nM. Interference experiments of the FRET biosensor showed good specificity for 8-OHdG detection. The biosensor could detect urinary 8-OHdG sensitively and selectively with simple sample pretreatment processes. It shows applicability for detecting biomarkers of DNA damage in urine or other biological fluids.

Keywords: 8-OHdG detection; Au@ZIF-8 nanoparticles; DNA oxidation damage; fluorescence resonance energy transfer; nanoporous alumina membrane.