A Dynamic DNA Color Image Encryption Method Based on SHA-512

Entropy (Basel). 2020 Sep 28;22(10):1091. doi: 10.3390/e22101091.

Abstract

This paper presents a dynamic deoxyribonucleic acid (DNA) image encryption based on Secure Hash Algorithm-512 (SHA-512), having the structure of two rounds of permutation-diffusion, by employing two chaotic systems, dynamic DNA coding, DNA sequencing operations, and conditional shifting. We employed the SHA-512 algorithm to generate a 512-bit hash value and later utilized this value with the natural DNA sequence to calculate the initial values for the chaotic systems and the eight intermittent parameters. We implemented a two-dimensional rectangular transform (2D-RT) on the permutation. We used four-wing chaotic systems and Lorentz systems to generate chaotic sequences and recombined three channel matrices and chaotic matrices with intermittent parameters. We calculated hamming distances of DNA matrices, updated the initial values of two chaotic systems, and generated the corresponding chaotic matrices to complete the diffusion operation. After diffusion, we decoded and decomposed the DNA matrices, and then scrambled and merged these matrices into an encrypted image. According to experiments, the encryption method in this paper not only was able to withstand statistical attacks, plaintext attacks, brute-force attacks, and a host of other attacks, but also could reduce the complexity of the algorithm because it adopted DNA sequencing operations that were different from traditional DNA sequencing operations.

Keywords: DNA coding; SHA-512; color image encryption; two rounds of permutation–diffusion.